

H2 PAC SERIES - HYDROGEN GENERATORS

The H2 Pac series is our high-performance on-site hydrogen generator system that offers a production rate of 0 to 24 Nm³/hr at 30 bar.

MODULAR • SAFE • EFFICIENT

• PEM Technology

The use of PEM technology offers inherent advantages such as high-pressure discharge of hydrogen and high-purity hydrogen delivery. This eliminates the need for external purification and compression – increasing downstream system efficiency. No caustic additives are required which decreases operational maintenance frequency and cost. PEM is also more compact and offers higher current densities than other technologies.

H2 PAC FEATURES

• Modularity

The H2 Pac series comes in two versions. The H2 Pac 50 and H2 Pac 100. The H2 Pac 50 can be upgraded by adding an additional electrolyzer stack. Multiple H2 Pac systems can be connected together to increase production capacity.

Safe & Automated

- > 7" HMI touch screen with automated PLC control
- Differential pressure and temperature monitoring allows the system to safeguard against abnormalities
- Hydrogen leak detection allows the system to initiate an automatic shutdown
- Automatic Nitrogen purging system activates in the event of an automated shutdown to ensure a safe environment
- Mud dauber fittings on the vent lines prevents insects from entering and plugging the lines
- > ATEX Zone 2 and PED 2014/68/EU components

Electrolyzer stack

H2 PAC[™] is an ET Energies Trademark for its Hydrogen Generation Systems

TUBE CONNECTIONS PROVIDED:

ITEM DESCRIPTION

-				
Purge	The system is equipped with a bypass valve for the removal of any remaining H2 in the line, vessels, and stack during Nitrogen purging after an emergency stop. It is also utilized to vent any Nitrogen when the system is restarted.			
O2 Out	Humidified Oxygen is vented out through this connection.			
H2/O2 Prv	These connections are designated for the installation of pressure relief devices.			
PSA Vent	This serves as the PSA system reject connection, allowing the dryer to vent out any moisture.			
H2 Out	This connection functions as the high-pressure discharge point for dry Hydrogen gas, with the hydrogen back-pressure reaching up to 30 bar(g) and maintaining purity exceeding 99%.			
Cooling In/Out 1	Utilized for heat-exchanger and stack cooling, this connection is on the chiller's cold side.			
Cooling In/Out 2	This connection represents the return line to the chiller (hot water) from the heat-exchanger and stack.			
H2 Water Drain	Via a coalescing filter, this connection tube releases water from the hydrogen lines before entering the PSA dryer system.			
DI In	This connection supplies DI water to the system.			
DI Out	Employed for draining the Anode vessel, this connection serves its purpose effectively.			

PURGE OZ H2 OUT PRV	oz PRV	
H2 OUT		
COOLING OUT 1 COOLING IN 1 COOLING OUT 2 IN 2		
H2 WATER DRAIN DI DI DI DI DI DI		

H2 PAC[™] is an ET Energies Trademark for its Hydrogen Generation Systems

H2 PAC SERIES HYDROGEN GENERATORS

MODEL	UNIT	H2 PAC 50	H2 PAC 100	
Water Supply	ISO) 3696 grade 1 (Ultrapure water)		
Consumption	L/h	10	20	
	gph	2.6	5.2	
Minimum Quality	MΩ·cm (μS/cm)	10	(0.1)	
Recommended Quality	MΩ·cm (μS/cm)	18 (0.056)		
Built-In Water Polisher		YES		
TDS Meter		YES		
Hydrogen Production				
Flow Rate	NLPM	0 - 200	0 - 400	
	Nm³/hr	0 - 12	0 - 24	
	scfh	0 - 422	0 - 844	
	Kg/day	0 - 24	0 - 48	
Discharge Pressure	barg		30	
	psig	435		
Purity	%	>99.999 (dry)		
Oxygen Production				
Flow Rate	NLPM	0 - 100	0 - 200	
	Nm³/hr	0 - 6	0 - 12	
	scfh	0-210	0 - 420	
	Kg/day	0 - 192	0 - 384	
Discharge Pressure	barg		2	
	psig	29		
Purity	%	>99 (humid)		
Power Supply	· · · · · · · · · · · · · · · · · · ·	·		
Voltage	V	380 – 480 vac 3 phase		
Frequency	Hz	50 / 60		
PEM Stack Specs				
Temperature Range	°C	25 – 80		
	°F	77 - 176		
Efficiency	%	>82% (HHV)		
Max Heat Dissipation	kW	10	20	
Anode Water Feed	L/min	0 - 40	0 - 80	
H2 Pac System				
Built-In H2 Gas Dryer		YES		
Caustic-free		YES		
Dimensions	W × D × H (m)	3.0 × 2	1.5 × 2.0	
Safety		Pressure relief and check valves		
		Automatic safe shutdo	own with inert gas purge	

1.

19501 NE 10th Ave, Suite #203 North Miami Beach, Fl 33179 USA

ELECTROLYZER STACKS

POWERED FOR THE FUTURE

Hydrogen is the fuel of the future

Our PEM electrolyzer stacks are specifically engineered for high efficiency and pressure, catering to niche markets seeking a compact yet powerful solution. Traditionally, smaller electrolyzer stacks have posed challenges with their cost per kilowatt ratio, limiting their adoption in various industries. However, ET Energies has successfully patented ground-breaking technology that addresses this issue head-on. By focusing on cost optimization without compromising on performance, we have unlocked the potential to make hydrogen production economically viable for small to medium-sized markets.

19501 NE 10th Ave, Suite #203 North Miami Beach, Fl 33179 USA

STACK SPECIFICATIONS

At ET Energies LLC our vision is to pave the way for a cleaner and more sustainable hydrogen future, where hydrogen becomes the gold standard for achieving ambitious energy transformation goals. With our advanced PEM electrolysers, we strive to empower industries with the ability to generate hydrogen on-site easily and affordably. At ET Energies, we are committed to making hydrogen synthesis readily available, playing a pivotal role in fostering a greener, more sustainable world. Join us on this transformative journey towards a brighter, hydrogen-powered future.

STACK PARAMETER	UNIT	ET-50.0K	ET-100.0K	
Power and electrical specifications	kW	50 ⁽¹⁾	100 ⁽¹⁾	
Voltage	VDC	70 ~ 115 ⁽²⁾	140 ~ 230 ⁽²⁾	
Current	А	100 ~ 600		
Power quality		5% peak – pea	ak, min 300 Hz	
Ramp rate	A/s	<30		
Peak power ⁽³⁾	kW	63 ⁽³⁾	126 ⁽³⁾	
Connectors	M14	4 (2×2 per terminal)	4 (2×2 per terminal)	
Mechanical specifications				
Stack weight	Kg	139	253	
Dimensions (W×H×L)	mm	250×250×403	250×250×735	
Oxygen discharge pressure ⁽⁴⁾	barg	35 ⁽⁴⁾		
Hydrogen discharge pressure	barg	35		
Water Supply		ISO 3696 grade 1 (Ultrapure water)		
Anode water feed ⁽⁵⁾	L/min	20 - 40	40 - 80	
Minimum quality, process ⁽⁶⁾	MΩ·cm (μS/cm)	10 (0.1)		
Recommended quality, process ⁽⁷⁾	MΩ·cm (μS/cm)	18 (0.056)		
Hydrogen Production				
Flow Rate	NLPM (Nm³/h)	0 - 200 (0 - 12)	0 - 400 (0 - 24)	
	Kg/day	0 - 24	0 - 48	
Oxygen Production				
Flow Rate	NLPM (Nm³/h)	0 - 100 (0 - 6)	0 – 200 (0 - 12)	
	Kg/day	0 - 192	0 - 384	
PEM Stack Specs				
Temperature range	°C	25 - 80		
Recommended dT at anode	°C	<6		
Efficiency	%		(HHV)	
Max heat dissipation ⁽⁸⁾	kW	<7	<14	
MTBF	hrs		000	
Notes	*Subject to change without notice			

Nominal power rating before EoL and 25°C. 1.

2. Voltage at specified current is dependent on temperature.

Peak power rating is only allowed for a short duration with a temperature < 70°C and voltage lower than 2.1v/cell. 3.

4. Intended for 5 bar(g), but can safely sustain rated pressure on Oxygen side.

dP at given flow is less than 7 bar(g). 5.

ASTM D1193 Type I type deionized water is the minimum quality allowed but may cause rapid degradation of the stack. 6.

Ultrapure water, ISO 3696 grade 1. 7.

8. During peak power operation

+1 (305) 655 - 2755 info@electrolytictech.com

19501 NE 10th Ave, Suite #203 North Miami Beach, Fl 33179 USA